
L AD-Algi 431 ANALYSIS OF PULSE PROPAGATION IN COUPLED HIC0OSTRIP i/l
TRANSMISSION LINES(U) ILLINOIS UNIV AT URBANA
COORDINATED SCIENCE LAS J E SCHUTT-AINE ET AL MAR 85

UNCLASSIFIED R-1836 N88@14-84-C-8i49 F/G 9/5 ML

I-EhhmommhhhlmI lflllIIIIflI



V.-,

1 . 0 3_'. I II. 1 1,2_

1111 1111- J925

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

Vi

• ....? .- .-.. ,... ,...... _. . . . . . . , . . . .-. , .

-. -. , -. - i3,2AI



A

11



Uticlassified

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
I&. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

Unclassified None
2&. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIS8UTION/AVAI LABILITY OF REPORT

N/A Approved for public release, distribution
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE unlimited.

N/A__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

A. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

R-report #1036 N/A

Ga.NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Coordinated Science Lab (I D~liable)
Univ. of Illinois N/A Office of Naval Research -

G c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)
1101 W. Springfield Avenue 800 N. Quincy Street
Urbana, Illinois 61801 Arlington, VA 22217

I.NAME OF FUNDING/SPONSORING ISb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION I(if applicable)

Sc ADRSSI~ty Sat ad IPCoelN/A Contract #N00014-84-C-0149
Sc. OOR~d (ity Stae ad ZI Coe) 0. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

* 11. TITLE 'inciude security Czaiaeaication, Analysis of Pulse
propagation in coupled microstrip transmissioi
1 2. 4RNAL AUTHOR(S)

J. E. Schutt-aine and R. Mittra
13&. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr...Mo.. Day) 15. PAGE COUNT

Technical FROM _____TO ____ March 1985
16. SUPPLEMENTARY NOTATION

N/A

17. COSATI CODES 18. SUBJECT TERMS (Continue on 'wuerse itnecessary and identify by block number)

FIELD GROUP SUB. GR. High speed Digital Circuits; Pulse Propagation;
Coupled Micros-,rip Lines; Cross Talk~~

19. ABSTRACT- Continu. an verse if neceaeary and identify by btock number;

In this report the problem %f propagation of high speed pulses is considered.
The purpose of this analysis is to investigate effects such as RC delays, reflection
cross-coupling or cross talk, etc. in coupled microstrip lines. Two-, three-, and
coupled N-line configurations are considered under various conditions of terminations._

20. DISTRISUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIF, ED/UINLI MITED 0 SAME AS RPT. -OTIC USERS Unclassified

22s. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c. OFFICE SYMBOL

eInetude Area Code Nn

DO FORM 1473, 83 APR EO:TION OF 1 .IAN 73;S OBSOLETE. Unclassified
SECURITY CLASSIFICATION OF THIS PAGE



ANALYSIS OF PULSE PROPAGATION IN COUPLED
MICROSTRIP TRANSMISSION LINES

J. E.BY

JE.Schutt-Aine and R. Mittra

Department of Electrical & Computer Engineering
University of Illinois

UbnIllinois

Accession For

NTIS r.RA&Il
DTIC TAB
Unann o-,:

1) 1_SrI____i.0 Diii
fVol

The work reported in this paper was supported in part by the Joint Services
Electronics Program, N00014-84-C-0149.



iv -

TABLE OF CONTENTS

Page
%

CHAPTER I INTRODUCTION I

1.1 Characterstics of Microstrip Transmission Lines 2

1.2 Close Form Expressions and Design Equations 4

1.3 Frequency Dependence and Dispersion 7

1.4 Time and Frequency Domain Characterization 8 '-"

CHAPTER 2 COUPLED TRANSMISSION LINE CIIARACTERISTICS .....-- 19

2.1 General Expressions and Propagation Modes. 20

2.2 Application and Coupling Parameter Measurement 26

CHAPTER 3 TRANSIENTS IN COUPLED MICROSTRIP LINES ..... ...... 34

3.1 Passive Terminations .............................. ............................. 34

3.2 Capacitive Terminations ......... . 45

CHAPTER 4 ANALYSIS OF MULTIPLE LINE STRUCTURES 54

4.1 Three-Line Structures and Modes of Propagation ........... ......... .. 54

4.2 N-Line Structures and Generalization ...... ........................................ 63

CHAPTER 5 CONCLUSION ......... ...................................................... 6-

REFERENCES ........................................................................................................................ ........ 67

.. ............ ......... •..... .. ....... ....... ... ,.,... ,.:..- L-.... rL
,

!''.." ° . " '. .'" . ,' .' "- " - ' ," -" "- .- ". ". .- ." " , '. . " -' .' . " .. '''. "- '', ". " , "".. .-.. . . . .''. '. . '.,T ¢



i. .- ,= - . 4: m- . t, .r -- -- , , - - ' - .t- -,, ,- . d-. - -o, . W TW W TY -W V ° - .p

CHAPTER 1

INTRODUCTION

High speed digital circuits have resulted from the miniaturization of solid-state devices

and the implementation of those circuits into dense systems (VLSI and VIISI). Switching

devices presently used have rise times and pulse widths in the range of a few nanoseconds.

Moreover, devices with switching delays of less than 10 picoseconds are being developed

from which delays of less than 50 picoseconds will probably result in large computers.

Aside from the physical characteristics of the devices, interconnections are another parame-

ter which determine the speed of these systems. Today, interconnections represent the main

limiting factor in the reduction of speed because of the inevitable RC delay they introduce.

NMoreover, with increased density and speed, the problem of cross-coupling has become more

critical since noise resulting from unwanted signals must be limited. Finally, reflections at

the terminals due to mismatch along with device nonlinearities, contribute to the complica-

r-,' tions which have posed some severe constraints for switching network design.

In this study, the problems associated with the propagation of fast pulses in microstrip
. interconnections will be analyzed. The purpose of this analysis is to investigate each effect

such as RC delay, reflections, cross-coupling, nonlinearities, and to propose a model for the

combined effect. Such a model is essential since it provides the engineer with the necessary

1elements from which design guidelines can be implemented while giving a better under-

standing of noise phenomenon.

In order to develop the model, it will be necessary to determine the physical characteris-

tics of the interconnections as well as those of the propagation medium. Unfortunately,

analytical expressions predicting those physical characteristics are not always realistic and

do not account for processing variations, nor can they be applied to arbitrary geometries. To

,°..
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circumvent this obstacle, several measurement techniques will have to be developed in order

to obtain the important physical parameters.

. .- An overview of the presently available microstrip technology along with the theoreti-

cal foundations is first explained. Some techniques of measurements in the time domain and

in the frequency domain are then discussed for both single and coupled lines. Experimental

results are finally analyzed and extensions to multiple lines are-attempted.

1.1 Characteristics of Microtrip Transmission Lines

Numerous investigators have studied the properties of microstrip transmission lines, pro-

posed models, design equations, and various approaches for the analysis. Figure 1.1 shows a

cross section of a microstrip line which consists of a strip conductor of width W resting on

a substrate of thickness h and dielectric constant e, , and a ground plane which serves as the

return path. The conductor can be either copper, gold, or an alloy of tin and nickel.

Since the fields between the strip and the ground plane are not entirely within the sub-

strate, the propagating mode along the strip is not purely tranverse electromagnectic (TEM)

but quasi-TEM with a phase velocity v, given by

CI''" v -- (1.1)

where c is the speed of light in vacuum and e,., the effective dielectric constant of the sub-

strate. The wavelength X,, in the line is:

.. L. (1.2)

where f is the frequency of the propagating signal. Moreover, if the line is assumed to be

lossless its characteristic impedance (or wave impedance) Z, is expressed by

Il
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CONDUCTOR

I DIELECTRIC SUBSRAT
ht E.

h =SUBSTRATE THICKNESS
t = STRIP CONDUCTOR THICKNESS

iEzDIELECTRIC CONSTANT

(a) CROSS SECTION OF MICROSTRIP LINE

ELECTRIC FIELD LINES
* -MAGNETIC FIELD LINES

(b) FIELD CONFIGURATION

Figure 1.1 \Iicrostrip transmission line: (a) cross% section showing the geometriL parameters
(h) field lines. Since all the lines dit not pass through the dielectri., j (uasci-TA

anal vsis mus-t he used.
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Z, (1.3)

where L, and C, are the self-inductance and self-capacitance per unit length, respectively.

From Maxwell's equations it can be shown that Z. and v, are related by

Z. =, c (1.4)

At lower microwave frequencies, the quasi-TEM model can be shown to be fairly accurate.

At higher frequencies a hybrid mode analysis would be required. This analysis is far more

rigorous, and we will restrain ourselves to the frequency range where the quasi-TEM model

is valid.

1.2 Close Form Expressions and Design Equation

Based on the quasi-TEM model, several techniques for characterizing microstrip transmis-

sion lines have been proposed. These techniques include conformal mapping [1], [2], the

method of Green's functions [3] [4], [51. the moment method [61, and variational techniques

[7], [8], Close form expressions from Wheeler [2], Schneider [91, and Hammerstad [101 have

been reported. They contain useful relationships between the effective dielectric constant.

the physical dimensions and the electrical parameters of the line. For instance. Hammerstad's

equations give the width to height ratio as a function of the desired characteristic impedance

(Figure 1.2).

For W/h < =2,

W 8exp(A) (1.5)
h exp(2A) - 2

... .
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ForWIV/h 2,

-V = 2[ I - n(2B -1) + E. ( 11 - ) +0.39- 061 (1.6)
h 7 2e, En(

where

A V*~ T  ~ (0.23 - ii- (1.7)

and

B- 377vt 18
2Z. -\e 08

These relations assume an infinitely thin conductor strip ;in practice, the thickness n'ust be

considered, which is done by defining an effective width of the strip, W, for use with Equa-

tions (1.5) -(1.8) instead of W.

For W/1h >--,
27r

W, W + ti~( 0 2-ih (09
ch irl -

For W/1h r,

=Wh + th[I + In(.!.) (1.10
h h t

It has been found that for i/1h 0.005 ,2 e, - I ,and 0. 1 (W /h < 0.5 ,neglecting
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the thickness of the strip introduced very little error. Since these values represent most

practical cases, correction for finite thickness is often neglected.

1.3 Frequency Dependence and Dispersion

The relations derived above were based on the quasi-TEM model. At higher frequencies

this model is not accurate for microstrip lines because of the propagation of hybrid modes.

As the frequency increases, the phase velocity decreases which reveals an increase of the

effective dielectric constant ; an increase of the characteristic impedance is also observed.

The frequency f below which dispersion effects can be ignored is given by [I]

f 0o(Ghz)= 0.3 (.11)
V h (cmL../7 I

and the effective dielectric constant e,(f ), is given by [12]

E, -E,

I .+ , f (1.12a)

f P

where

Zo
f, = . . (1.12b)

Swrh

G = 0.6 + 0.009Z, (1.12c)

The frequency dependence of the characteristic impedance Z,, was reported by Owens [13]

Z 9 (f ) = 377hw r W (f ) (1.13)

where W.,, f )is the effective width given by ::-
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W + (0) - W (1.14) 

W'(f IV + fp

W(0) is obtained from (1.13) when f =0.

1.4 Time and Frequency Domain Characterization

The steady-state, single frequency solutions for the voltage and current on a transmission

line derived from Maxwell's equations [14] have the form
LI

WI (0.15)
V(t,x) =[A e bO+Be e.).

I(f x A e -B e e (1.16)
zo

where A and B are constants which depend on the terminations. This can be rewritten in a

more general form which accounts for the transients in the line:

V(z,x) = V (t ,x) + V t-(x ) (1.17)

I(t,.x) = (-[V (,x)- V(tx)] (1.1)

1.4.1 Time Domain

Experimental determination of microstrip line characteristics is classically performed

-. using Time Domain Reflectometry (TDR) techniques. Reference [15] gives a complete over-

view of the basic principles and their uses for network transient measurement. To -visualize

the technique, let us consider the test set up shown in Fig. 1.3a : the system consists of a

-..PI_

'-.. 
2

-S .
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zg (5OSI) LINE(50n) IRNE I ZL

Vg

(a)
ZL ZO

V3 (t) 'L ZL+ZO

VgVg zo

Vg V0

(b)

l'ivure 1.3 Time Domain Reflectometrv. Applications to transmission line
characterization.(a) experimental setup (b) -voltage reading. The time axis can
al-so be used as position axis which allows to determine and locate discontinuities
along the test line. Rise time of applied step 2z50) ps.

L
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ramp generator V, of internal resistance Zg (usually 50 f)). A coaxial cable of characteris-

tic impedance Z, and length I is connected to the line to be tested (characteristic impedance

Zo and length 1). When the switch is closed at I =t, a forward moving wave C+ is gen-

erated at point a. For voltage and current continuity, it must satisfy

r7

z - (1.19)il- Zg Z.,,

*.£

from which we obtain

C+ VIP (1.20)2

Upon reaching the test line at point b, a backward wave C as well as a forward wave T+

appear. They must satisfy

-4

C+ C- =T+ (1.21a)

+ T+ (l.21b)
Z Z,,,'

1..%

which yields

Z- = -"") )c +- F, C (1.22a)
Z' + Z'

T + - 2ZC (1.22b)7,, + Z,

where r, is the reflection coefficient from the test line at b. When T, reaches the end of the

-i

• • -- ,, ,, ,..*- ..; " ""'' " ". . ." ' ."....,. . ., ., . ..,.." "... .. . .. ... .....'.'',.. " 
o

, ' , .. . "" " : 
.

, " ""•" ." " "' ." •"• " " "- " '
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test line at point c, a reflected wave T- is produced such that

T_-- ( Z - )T =FL T (1.23) %

where Fr is the reflection coefficient at the load. Upon reaching b, T- will generate two

new waves C- on the coaxial line and T' on the test line. These successive reflections will

keep taking place indefinitely. The expression for the voltage at any point along the line

will have the form of a geometric series of rg FL which converges to the final value (for

very large t)

V = ZL V, (1.24)ZL + Z'

Figure 1.3b shows a graph of the voltage at point a, V, (t) as a function of time. Since the

phase velocity in both coaxial and test lines are assumed constant, there exist a linear rela-

tionship between time and position. The first step in the voltage is the magnitude of the for-

ward wave traveling the coaxial cable C . Its duration is 21 /v, where v, is the velocity in

the coaxial line. The second step is T.. If the magnitudes are normalized to C,, the

difference between C and T . is the reflection coefficient F due to the test line

Z,, = (1.25)Z,, +Z',

When F,, is read from the Time Domain Refiectometer, it allows direct calculation of Z,,

Z,, =Z( i ) -- (1.26)

AI
"-, ...- , -- . _.-,,"."- •- . "-' .' ,.-',"..'" ,.. " . '.' # - -' " '.-. ' .., . ,-' ',-, ',-.." . 'L"' , " " ,'"" ' . " -1"'
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Whereas the phase velocity vo can be obtained from the time delay r,,

v. = 2- (1.27)

Capacitance and inductance per unit length can be extracted using (1.0-0.3).

C' Z. 1 V

I)C - l-L (1.28a) "

and

L, =Z (1.28b)
Vo

1.4.2 Frequency Domain - Scattering Parameter Model

The information obtained from the TDR, although complete. does not provide us with -

any insight of the frequency dependence of the transmission line parameters. Because of ins-

tability concerns at large frequencies (RF and microwave) and because of their manoeuvra-

bility at those frequencies, Scattering parameters (S parameters) can be used for a frequency

-7: domain analysis. A good introduction to S parameters is given in References [16] and [17].

We briefly summarize the essentials of these parameters and their meanings.

Figure 1.4 shows a two-port network inserted on a line of characteristic impedance Z,,.

Both ends of the line can be regarded as connected to generators of internal impedance Z...

E, I and E, 2 are the incident portions of the voltages in ports 1 and 2, respectively. Simi-

larly, E, j and E, 2 are the reflected portions of the same voltages. We can then define four

traveling waves on the line

t-.

.1
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PORT I PORT 2

3~ S.
b2: S2101 S2292

Figure 1.4 -Scattering matrix. Definition in terms of the power waves.

a a zo. Z0-

-b IMICROSTRIP LINE I bgZ+Z

Zg
+. I V0 9

Vg~-- F OUCE TWO PORT

s2 r e-s2 wI Ie~
V0

Fiue1.5 Experimental setup for determining the characteristic of a microstrip line as a
function of' frequency. Equations are shown that relate the velocity and theimpedance to the measured reflection and transmission parameters. -

p.:
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E, E, 2
r-(0.29a)

E,"
b2 (1.29b)-NT -Vz-

The square of the magnitude of these new variables has the dimension of power; I a I, is

the incident power to port I ; Ib , j 2 is the reflected power from port 2 of the network. The

four S parameters characterizing the two-port relate the traveling waves as follows

b1 =S 1 1 a + S1 2a, (1.30a)

b 2  S2 1aI + S, , (I.30b)

From these relations, the four S parameters can be defined alternatively as

__11 b, S,. b 1130

a I 2=0aI-a20

b b 2
S 1 - S22 (1.30d)

a a l=0 a2 a 1 =0

If both ends of the line are connected to generators with internal impedance Z,, then a and

a 2 are simply the incident waves from the generators. Since the incident power from either -

generator can be deliberately set to zero, Equations (1.30c) and (1.30d) provide the main

scheme for determining the S parameters of a network. It is of interest to note that S and

S., are reflection coefficients and relate traveling waves of one given port whereas S 2 and

S 21 are the transmission coefficients of the two-port.

4-,
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1.4.3 Scattering Matrix for Transmission Line

When the network to be characterized is a transmission line, it can be modeled as a two-

port (Fig. 1.5). Consider an unknown transmission line of characteristic impedance Zo and

length I embedded between two coaxial lines of impedance Z. terminated with their

characteristic impedance. On the left is an RF source of frequency f -au/2rr. Setting the ori-

gin at the first intersection , the voltage and current equations for the system are

- -' ,' (1.31a)
V (x)=A e '+Be

-I-- +1-__

I -(x)= =[A e "t -Be 0] (l.31b)
Z9

v 2 x)=C e "+De ' (1.32a)

1 (1.32a)I~x)=-c e + D e
i 4x ) [c e ° -D e '° ](1.32b)

Z.

v. and v, are the propagation velocities in the coaxial and test lines, respectively. A, B, C,

and D are constants which depend on the terminations. Applying the boundary conditions

at x =0 and x =1, we obtain

V2 ) ((1-r2)3 (1.33a)
S2I = A = -r 2$2

Si B _(- 2 ) (1.33b)
A 1 - F 2

o2

where

-. ... .. . . 1
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3=e (1.34a)

and
.1."

r Zo - z (1.34b)f~i!I  Z. + Z9 "

r is the reflection coefficient at the ends of the unknown line. Adding (1.33) to (1.34), we

get

r +c
"+21 S+1 (1.35)1 + ro

Subtracting (1.34) from (1.33) gives

i- -

SZ -S1t = o (1.36) -

Combining (1.35) and (1.36) yields

S2 -s2 , _S 1 +(s2, -S12)-2(S I', +S 2 Z"
r = -2- _ 1 _1 (1.37a)

s,, -S'2 ± I +(Sr -S,)-2(S, +S 1 ) (1.37b)
2S21

Since S 11 and S21 can be measured with a network analyzer, Equation (1.37) allows a direct

determination of r from which Z, can be obtained. The propagation velocity and the

effective dielectric constant can also be obtained. Figure 1.6 shows experimental plots of

characteristic impedance versus frequency for various geometries of lines. The measure-

ments were performed on an HP 8505 automated network analyzer. At higher frequencies,
I-d

4.'.

o.'I

S
I ° '

. .. - , . t &.S . S ~ . ~ '. <
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p 95

90

85

- 80x W/h: 0.61
80- -

E 75 - X_~ Wh 0.92

N 65 o"

60 --------- -- 0 W/h: 128

:5
50

45

40 I

.2 .3 .4 .5 6 .7 .8 .9 1 1.1 1.2 1.3

I-- FREQUENCY (GHz)j

Figure 1.6 Experimental plot of the characteristic impedance Z, as a function of 1'requency
for different geometries. The dashed lines are the best fit curves. \leasurements
were performed on an HP 8505 RF network analyzer and Equation (1.37)
allowed determination of- Z.
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* the measurements ecome more difficult and external effects such as junction discontinuities,

capacitance, and inductance become more significant.

V 4
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CHAPTER 2

COUPLED TRANSMISSION LINE CHARACTERISTICS

The theory of coupled transmission lines arose with the early applications to multicon-

ductor systems. Its development continued with the advent of directional electromagnetic

couplers [18]. Several methods using the quasi-TEM approximation have been proposed to

obtain the parameters of coupled microstrip lines. A comparison of these methods is given in

[19]. Krage and Haddad [201 [21) have determined the inductive and capacitive coupling

coefficients as well as the directivity for various geometries of coupled lines. Bryant and

Weiss [22] have established the relationship between the electrical and physical parameters

of coupled line pairs using the Green's function approach. Their MSTRIP computer program

has been validated after comparison with various authors. Garg and Bahl [23] derived semi-

empirical equations for the even and odd mode parameters tIammerstad and Jensen [24] suc-

ceeded in implementing a model with errors less than those caused by physical tolerance.

Recently, Kirshing and Jensen [25] reported frequency dependent expressions with unpre-

cedented accuracy. Most of the solutions provided by these numerical techniques suffer from

the lack of experimental data which would validate their application to microstrip coupler

design. The main difficulty arises with the presence of different modes of propagation and

the parameters associated with these modes which impose more complex measurement tech-

nique requirements. The goal of this chapter consists of implementing the electrical model

for coupled lines and determining experimentally the coupling parameters. Correlations

between physical dimensions and electrical parameters can then be established empirically.

Altough this method limits the flexibility of the microstrip designer. i, provides more accu-

racy for parameter determination while giving a better insight of the coupling phenomena.

....~~~ •v -.- . -. .. -.. -. ..... .... - -.. . . . . ' 'i. - - -i-i
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2.1 General Expressions and Propagation %lodes

The differential equations relating the propagating voltage and current along two cou-

pled transmission lines are

L 1 1 - + L 1 2  (2.1a)a-x/ at at

V: = L 2 1 -1 + L,, 7 - (2.1b)ax Ot at *1
0 1 V1  OV, (2.2a)

ox at at

VV
--- C2 1i8VI + C 022 (2.2b)

ax at at

V1 and V_ are the voltages along line I and line 2, respectively, and 1 and I, are the

corresponding currents. The L,. and C, are the matrix inductance and capacitance

coefficients. The mutual terms are equivalent, C 12-.C and L 12-L21. Moreover for sym- 1
metric structures we also have L I-=L 2 and C I --C 2'_ Those matrix elements can be related

to the electrical parameters. Figure 2.1b is the distributed model for two coupled identical

lines for which C, and L, are the self-inductance and self-capacitance, respectively, and L,,,

and Cm, the mutual inductance and capacitance. Kirchhoff's law in differential form gives

- I = L, aI + L,, 0 (2.3a)
ax at at

-- =:L,,, (23b)l

ax2 = + L, 2.b
ax at at

" ": " -j

I2. ,
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h Er

(a) COUPLED MICROSTRIP PAIR

r

_ _V_ I_ Lm "_Cm __"

V2 12 L S-:

(b) CIRCUIT MODEL

Figure 2.1 Coupled microstrip lines (a) geometry, (b) distributed circuit equivalent. It is
assumed that the two lines are identical, I., and C, are the self-inductance and
capacitance of each line. L , and C,, are the mutual parameters of the pair.
These parameters can be measured and related to the matrix elements usino
Equations (2.5-(2.8).

9.

, , .: , . ,. .. .... ., ., ,, , ,, . . .. ,, ... " < -' ' - '. -. . . . , . " . , . ,. . ," , .. . i -
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- C IV,~ +C. C IV (2.4a)

ax at at

a], av1  8V2* --- ~ C, + C (2.4b)
ax a t at

Comparison with Equations (2.1)-(2.2) with (2.3)-(2.4) gives the equivalences.

C 1 1 C, +Cm (2.5)

C 12 = C (2.6)

L L, (2.7)

L 12 =(2.8)

For the symmetrical case one solution can be found by adding (2.1a) to (2.1b) and (2.2a) to

(2.2b).

- v -(L 11 L 12)al (2.9a)

ax at

-aQ=(C + C12 a~ (2.9b)
ax at

where

V~ =(V+ V) (2.10a)

41I + 1~ (2. 1Ob)

02
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are the common mode voltage and current. Equations (2.9a) and (2.9b) have the same form

as the well-known single line Telegraph Equations ; therefore the solutions in the fre-

quency domain assuming a time harmonic dependence are

t+joar

V(x= A, e "+ B, e (2.11 a)

1,(x)= e e (2.11b)"" " Ze

-0

where A, and B, are constant coefficients associated with the forward and backward trav-

eling waves, respectively. Z, and v,, are the even mode impedance and propagation velocity,

respectively

ZI /L!I+L t2 /L, +L,, (.2
,,+c,.I= -_., (2.12).

V1"+ v+ = = (2.13) ,l
"'_\/(L I I+L 12.XC I I+C 12) V(L, +L., )C. -.

Ii and (a=2rf is the angular frequency of the propagating signal. Subtracting (2.1b) from

(2.1a) gives

a = (L n-L 12) 01,. (2.14a)
ax at

- = (CI 1 -C)- (2.14b)
ax at

where

I-.

. . . . . . . .

'.:;I
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=j '(V, - V') (2.15a)
2

Id V 2) (2.15b)2

are the differential mode voltage and current. As before chis system can be solved to give

Vd(X) Ade + Bde (2.6a

Ad B d e I (2.1 6b)
Jd(x) -e '

Zd Zd

Ad and Bd are as before constant coefficients associated with the forward and backward

* . waves, respectively, and Zd and 1
'd are the odd mode impedance and propagation velocity

defined as

= 1211-L L (2.17)
C1 - 1  0 C,+2C 1

-V_________ _________ (2.18)

Using Equations (2.10) and (2.15) we obtain the general solution for the line currents and

voltages

3 VI(X) Ve(x)+ Vj(x (2.19a)

I 1 (X) = f(x) + I, (x) (2-19b)
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V .x) V(X- V,(x) (2.20a)

1 4x ) = '(X ) - l,(X ) (2.20b) .-

which gives

", ","d "d (2.21a) .-
V I(x) =A e + B e + Ad e +B, e

Ae -: *'7 Bo ,. A - B, ,,I.

Be ZAd Zd

e+1--i- (2.21 b)

V(x) =A e + B, e - A e - e (2.22a)

-I _ -,-

+Be e+ -Ad e "de•

A = Bz, e z2 e + - e (2.22b)

Z'. Z'.Z Zd

Equations (2.21) and (2.22) give the general form for the line currents and voltages for a

time harmonic excitation. The constants Ae, Be, Ad, and Bj are determined by the boun-

dary conditions at the four ends of the lines. Determination of these constants depends on

the nature of the problem. For the case where the excitation is periodic, a Fourier series form

must be assumed as the general solution for which the constants become the Fourier series

coefficients. Finally for nonperiodic excitation, a Fourier transform approach must be used ..

for the general solution. This will be illustrated in the next chapter. In all cases, the time-

dependent solutions have the form

V (x) a (t -x) + , + xi + a,(i x + + (2.23a)
V. .e V, ,
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S1,(x) =-[a, (t - -b,(t + + .- [a,( -- b(t + _ (2.23b)
C  VC  Zd Vd V d

-. S

V(x)= (t + (t + -_.)_ a,(t -_..)_ bd(t + -.-.) (2.24a)
y e Vd Vd

i ,(x) = [a,(t - - be(t + -)] [a,(t - b(t + -_.)] (2.24b)
". " Ve. Zd Vd Vd

a, and ad are the forward functions for the even and odd modes, respectively, b, and bd

are the backward functions for the same modes.

2.2 Application and Coupling Parameter Measurement

The major advantage of Equations (2.23) and (2.24) is that the solutions are put in a

form where the reflected waves are separated in time from the forward waves. This can be

applied with TDR measurements to obtain the coupling parameters of a microstrip pair since

only the forward voltage waves need to be considered. In Figure 2.2a, two identical coupled

lines of length I are connected at x = 0. A coaxial cable of characteristic impedance Zg con-

nects the TDR to the pair. A forward traveling voltage step of magnitude V f upon reach-

ing the junction generates a backward step, Vb. From Kirchhoff's law we must have

vd, a,(to)+ a,(t,o) v + Vb (2.25a)

,". =a, , Ia -) + a, 't- +  a4 O a.--t--) V (2.25b)

d, ZdZ *

v ,  a,(t,o)- a,(to) (2.26)

This implies that

-_..

S.,-
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Ze- 2 ~ O)Z

© 21

+ 12(o)ye -time delay

(NO ODD MODE)

a) EVEN MODE IMPEDANCE DETERMINATION

z -

+ 
°'.

(b) PARALLEL" CONNECTION

Figure 2.2 :Experimental determination of the even and odd mode characteristics of a pair
of coupled transmission lines: (a) even mode measurement since no odd mode is
present both velocity and impedance for this mode can be measured : "h) parallel
connection since it is difficult to excite the odd mode, this configuration is used to
determine the parallel combination of Z,, and Z,,

IL1

.. i
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a(, o =0 (2.27)

and

Vd, =Z. (2.28)
lrd, 2

Therefore, the reflection coefficient measured at x =0, p, =VV, V can be related to the even

mode impedance of the pair:

l"q

Z, = 2(-- )Z (2.29)
-Pe

Since no odd mode exists, the measured time delay r,, can be related to the even mode velo-

city:

v, 2 L (2.30)

Another configuration is that of Figure 2.2b in which line 2 is connected to ground at x = 0

and line I is connected to the coaxial line. The equations are

Vd, a(t,o) +ad(t,o) =vf +V (2-31a)

(t) a(t0) v, V(2.31)

.a, = ,o a ,O) (2.32a)
ii~i !

.-.. 4



29

V = 2 (2.32b)

]li. Z,. + Z,

The associated reflection coefficient p,,= V,/V, can be measured directly and using the

above relations we obtain

Z' Z' = Z' I' -' (2.33)1-p

Z+Zd P

Since both even and odd modes are propagating, a direct relation between the time delay

and either velocity cannot be established. Nevertheless, Equations (2.29), (2.30), and (2.33)

provide the necessary relationship for extracting Z , Z,, v., and, if the single line parame-

- ters are known, Equations (2.12), (2.13), (2.17), and (2.18) can be used to determine the

mutual capacitance and inductance as well as the odd mode propagation velocity of the pair

(Figure 2.3). From these equations we see that

S)

Z' < Z" < Z' (2.34)

which suggests that for weak coupling

Z' = Zo = Z' (2.35)

Table I shows experimental values of self and coupling parameters obtained for several

microstrip pairs. These values were extracted by using the methods outlined above. As

expected mutual parameters depend strongly on the spacing between the lines it is also

observed that the mutual inductance is stronger even at wider spacings between the edges of

the coupled lines.

L

S. .q
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Cs :SELF-CAPACITANCE

.-- Cm MUTUAL CAPACITANCE

~cs Cgl CS Ls  SELF-INDUCTANCE
Lm: MUTUAL INDUCTANCE

EVEN MODE: v, :\v.

L L+V +V ) ,(s z -
CS

/ Cs(Ls+ Lm)

ODD MODE: v, v

VEr F -VCL+ L2Cm

/, /// 7 7 7 ( LsL(Cs+2Cm

Figure 2.3 : Diagram showing the configurations for exciting even and odd modes and rela-
S..tions between characteristic impedance, propagation velocity, and the self- and

coupling parameters of the pair.

".
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TABLE 1 EXPERLMENTAL DATA OBTAINED FOR VARIOUS GEOMETRIES OF
TRANSMISSION LINES WITH GLASS-EPOXY DIELECTRIC. GEOMETRICAL
DIMENSIONS ARE AS DEFINED IN FIGURE 2.1, THEIR UNIT IS IN MILS.
IMPEDANCES ARE IN OHMS AND VELOCITIES ARE IN m / ns. INDUC-
TANCES AND CAPACITANCES ARE IN nH /m AND pF Im, RESPECTIVELY.

Desian Width = 10 Ails Dielectric height :21 mils

S Zo Va Zd Vd Ze Ve Ls Cs LM CA
----------------------------------------------------------------------------

S 93 .187 4S .t12 127 156 496 Sa 219.7 40

93 187 St 167 122 IS? 49 ',i 9' 0 3 2')

10 T3 V37 S4 .177 1122 t19 496 5 t) t 7 2

t 'Z .107 G0 .82 i2v .161 4 "6 In
14 93 t87 60 t67 U13 166 ' 'I t5 I 2

t6 93 .187 62 .162 108 169 496 58 1.1 .t

i8 93 iB7 64 tS7 £04 172 496 58 39 2 21

20 93 187 65 .S6 102 .174 496 53 77.6 20

Desian Width = iS Ails Dielectric heiaht :21 ils

ii Zo 'o Zd Vd Ze Ve Ls Cs Lm C.

-----------------------------------------------------------------------------------------
3 78 .182 39 .192 116 148 429 70 224.8 31.

S 78 .182 44 .198 1.3 ISO 429 70 205.4 22

7 78 .i82 47 .200 111 is 429 70 1.92 8 i8

10 78 .182 52 .206 107 .14 429 70 174.4 11

1.2 78 .182 5 .212 104 iS6 429 70 1S6 5 6

14 78 .1832 59 .207 102 .s 429 70 144.9 6

16 73 .182 60 .203 O0 IS9 42? '/0 133.6 6

18 78 .182 61 .198 98 161 429 70 122.4 6

20 78 182 62 .t90 94 164 429 70 iO00. 7

Design Width = 20 Mils DielectrLc heiohl :21 Mils

Zo Vo Zd Vd Ze Ve Ls Cs Lm Cm
--------------------------------------------------------------------------------------------------

3 72 .132 37 .t6l 99 .1'4 395 7, il2.3 45
S 72 .182 42 ,t76 ?8 ,IS4 39S 76 IS6.7 30 "

7 72 .132 4S .74 94 ,S7 395 76 tS. t 2S

1o 72 .1132 52 .200 92 .iS7 39S 76 13S.S 1.0

1.2 72 182 54 .20S 90 is8 395 76 129.4 7

14 72 .182 57 .206 88 t60 395 76 119 0 4

16 72 182 sa .202 86 .1.61 95 76 IOGB 5

18 72 182 59 .204 35 t62 29S 76 104.i 3
20 72 182 60 .194 82 t1 39S 76 86.3 5

U.

-pi "

.. .
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Since different charge distributions arise with the two modes, some authors have found it

convenient to define an even mode capacitance and C,., and an odd mode capaciance CW and

base the complete analysis in terms of these parameters [8] [9]. Figure 2.4 shows a decompo-

sition of the total capacitance of a microstrip pair in terms of even and odd mode capaci-

tances. The existing expressions for C., and C, are semi-empirical, however, using our

' model, it can be shown that C , =C, and C,, C, + 2Cq,.

The major advantage of the techniques of measurement introduced above is that they are

very accurate, since no approximation was made in deriving the model and the relations

between the coupling and propagation parameters. As a consequence. reliable empirical data

can be established from these measurements and used as design guidelines for microstrip

couplers.

,-S-
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S

W IMAGNETIC WALL

/ P777

C,- P T;r TCpVCf + +

S

dG- w- -

(a) EVEN MODE

ELECTRIC WALL

kCga

Cqdi L1
OtTIC IC ~ p~

I~~ L -P

(b) ODD MODE

Figure 2.4 Decomposition of the capacitances into odd and even mode components. C,
represents the capacitance associated with the TENI propagation mode ,C. is the
fringing capacitance. C., and C,, are the mutual capacitances in air and in the
dielectric, respectively. The normalized charge distribution associated with each

W mode is shown on the right with a,, being the charge at the center of each strip.



CHAPTER 3

TR.NSIENTS IN COUPLED MICROSTRIP LINES

In the preceding chapter, the response of coupled lines was analyzed for harmonic (single

frequency) excitation. We now wish to extend the analysis to account for the transients

involved in the case of an arbitrary excitation. This is particularly important for digital

applications where the signal applied to microstrip lines is a pulse or an impulse. Since the

rise and fall times of these excitations are becoming shorter, the coupling between adjacent

lines becomes more significant and has more serious effects. This is the so-called "crosstalk"

noise. Various authors have attempted to describe this coupling phenomenon and relate it to

the mutual parameters of the pair. Cotte [26] developed a first theory on the propagation of

pulses in a coupled pair of conductors. Catt [27] analyzed the same effects for various

"' . transmission line configurations. Jarvis [28] studied the waveform distortion caused by this

coupling as well as the effects of the terminations. Several numerical techniques have also

been applied for simulation of these coupling effects. In general, the cross-coupling between

two lines is a function of the terminations which make up the boundary conditions for the

general solution previously derived. This chapter will examine the solution to this problem

in the time domain.

3.1 Passive Terminations

Many practical situations in digital applications involve pairs of microstrip lines for

which the the behavior of the terminations does not vary with the magnitude of the sig-

nals. In this case a real linear impedance can be used to model the terminations at the source

and at the load. Figure 3.1 shows a microstrip pair having resistances Z, and Z, 2 at the

sending end and Z- , and ZL , at the far end. The voltage sources have magnitudes V, and

V, 2. The time harmonic solution for the voltages and currents was found to be

-1

0 -- ." " " " : - "" ". - . i..- ,;-- . -- . '- ; " " .;. - . .
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-vs, 1  L ZL I

I I t

ti t2  t3  t4

Figure 3.1 (a) Representation of a microstrip pair loaded with pa-sive terminations. The
lines are assumed to be identical. V ,and V 2are arbitrary voltage sources.
(b) Representation of a source waveform in the case of pulse excitation.
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"'" "' ' ', a 'J(3.1a)-
VI(x)= A e + B, e + Ad e '+ B, e

A, ,, B, Ad 'd Bd +'d3.I•I,(x) = e - e + - e -- e (3.1b)
Zd Z Zd

I+

- -- + 1...-- -1 '.-. +1--

V (X) =Ae, e "d (3.2a)

A -- B, A, -,',d B +1 (3.2b);? li,(x)= '-e "'-ze -2-Z e + - e (.b -.

Z, Zd

If we apply the boundary conditions at x =0 and at x =1 , namely

V, v 0) + Z, 11(0) (3.3a)

V,= V2(o) + Z, 1 2(0) (3.3b)

0 V (1) - ZL ,1 J(1) (3.3c)

0= V2()-ZL2141) (3.3d)

and by setting

Z , Z,, ZL I ±
V q = d (3.4a)Z, Z, Z, Z, -

Z , IZ,. ZL I Z.,
s y "(3.4b)

Z, Z, ZJ Z,

e e (3.4c)
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d =e a e (3.4d) -'

we arrive at

( +m) (1-rM) ( +s) (I A) A?

( +v) (l-v) -(1 +y) (y-1) B, 2 (3.5)
0,( -q) ,(1 +q) Od(1 -z) Cd(1 +z) Ad 0

o,( -d) a,(1 + d) 0,(p -1) -ad(1 +p) Bd

which is the generalized matrix equation for the coefficients A, Be, Ad, and Bd.

In many practical cases, the terminations on both lines are identical, or Z. =Z, 2=Z, and

ZL 1=ZL 2=ZL. This reduces Equation (3.5) to a much simpler form. Then Cramer's Deter-

minant Rule can be applied to give

(V, + V )Ze 1____--Ae - ('" -r:L0 (3.6a)...

-(V., + V,,)z,or 0 2r 2
B,= Le _I_______ (3.6b)

2(Z, +Z,) 1- F, FL.T

(V, -V, ,)Z,(V = -( Z 4  I (3.7a) ...
A4= 2(Zd + Z,) I r~d rjd Od

B = -(v , I V , 2)Z ,d o0 Z , 2r .2
"S B4 - d 1 -_F __ (3.7b) -
Z4 + Z, -r,,,, 02

where

2 Z, -Z, ZL --Z, (38
= Z + (3.8a) ..

. - ..
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Z, -Zd ZL- Z
rd Z'+Zd rLJ Z+ (3.8b)

e -  (3.8c)

Od= e d 
(38d)

Equations (3.6) and (3.7) give the coefficients for the time harmonic periodic excitation

where V, 1 and V, 2 are assumed to have the same frequency. From these equations it is seen

that even or odd mode can be matched. Particularly, when Z, =Z, and ZL = Zd, we have

i (V5 , + v5.,)
+ (3.9a)
4

B, -V,+V ~ (3.9b).-

_ (V, - V, )Zd
Ad =  2(Zd + Ze)

B= 0 (3.9d)

In the case where the excitation is not periodic, contributions from all frequencies must be

included in the general solution. The coefficients , thus become continuous functions of fre-

quency. In the time domain, solutions for the voltages and currents are obtained by

integrating over all frequencies. We therefore have

Vi(tx)f A,()e " dc + fB(w)e d. (3.10a)

-c-
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+Go +W0
+Jbr - -.2_ +j&.r + 2-, .

+ fA,((a) e "d d + f B,() e Vd dco

00 00

+00t~ t 0 +

Xd - B,(c)e dct (3.lOb)

i b " . d ~~,. - o. " .

f f',. V ~I(t~x)=±fAe(ca)e "da+ B(oe "da(.1)
-000

+jot - r +

+( I f A d(co)e "d + f1B ()e e-dco+00 x 7

+jd - _++0 + dw .

t): A-f(A(,) e d" dw f Bd(,w) e d dc (3.11a)
+c+00 

+u

+J(J -- J~ + d~

" f f de.0 -00

+00 +00

I 1f Ad (a)e - Zd edW(3.1 1b)

f Zd dw + - f Bd ()e d t

This can be rewritten in a simpler form as

VI =SI + S2 + S, + S2 (3.12a)

S, S2  5- 5"
It= Z + Z(3.12b)

V =SI+S 2 -51-S'2  (3.13a)

S S 2  5. -"2-
2 Z, Z + T (3.13b)

. -. -. .,- -. • • • - . . . . . . . . . . . . . . ... . .. . . . . . . .
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" where S ., S" L, and S"2 are the forward and reflected voltage waves for the even and odd

modes.

+0.

" ::S 1 =fJAo~e)e vdo(3.14)

+00

+ 00+

s' If AdGi) e Vd dw(3.16)

+00 +just +

S= Bd(w) e Vdd (3.17)

-00

It is easy to recognize that the coefficients A,(W), B,(W), Ad(e), and Bd(e) are the Fourier

transforms of S , S2, S1 and S2 respectively. By applying the same boundary conditions as

for the time harmonic case and keeping the assumption, Z, 1=Z, 2=Z, and ZL 1=ZL 2 -ZL, we

can solve for these coefficients in the frequency domain

Ae(e) = [w, (c)+ w )]Z, 1 (3.18a)
2(Z, + Z, ) - rser Lee?

BG-..-= -1w, 1((d) + W, )Z re0 I (3.18b)
- (,=2(Z, + Z) I - r,,rLo.

,, W [w,(W) - W, &ellz,
i-4Ad(W)= [ (3.19a)2(Z, +Z,) -rd d

.'2 '. -i -. i .. - .; .i- --'2 .-. ..
. . . ..
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-Bw, (wo) - W,. I)]Zd rLd 0d 1B, (ca) = - -(3.19b) " "
2(Zd + Z,) 1 - rd Ld Od

where W, I(o) and W, 2 o() are the Fourier transforms of V, (t) and V, P(r), respectively.

+00 *

W 1 (w) = . - f v, (r) e- jdt (3.20)

+00

-00W.2w f v,:t e- di (3.21)

Since for passive terminations we always have

F, FL OeIl (1 (3.22)

and

S 21rd I 0 1 (3.23)

Equations (3.18) and (3.19) can be written in the form of infinite geometric series of the

reflection coefficients.

(W, + W ,)z 00 -2.1
A ) e (3.24a)

2(Z, + Z, ) k=o

_) (Wl + W,2)Z -2
B--) -rk,,rf- 4+ e (3.24b) -

2(Z, + Z,) k =0 
.

1
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(1v5  -W2)Zd

Ad (Wa) = , rrLd e "- (3.25a)
2(Zd + Z) - =o .-

B (W, I W.- 2 )Zd k 'd+-- (3.25b)Bd~s rk r d

2(Zd +Z,) Ar=sdLde

Using Equations (3.14) through (3.17) and making use of the time delay theorem for Fourier

-" transforms, we can then invert for the associated modal voltage waves in the time domain.

S (t ,x) Z '[V, 1(t x ) + Vs(t -x +2k)Irkrk (3.26)
2(Z, +Zs) k V se Le

-Z__-V_ x-2(k+1)v x-2(k+01)rkrk+1

-PX X(5 1 t )+V32(r + - Ser rLe (3.27)2(Z'+Z') k=o V, Ve

"Z -X - - X +2L rd (3.28)
2(Zd+Z 3 , k0'O Vd

-Zd cc -kx2 1
-'tX) - Z [V(t + x2(k+l)I) Vit + x--2(k+l))l rkr (3.29)

2(Zd +Z k -0 Vd Vd

and using relations (3.12) and (3.13), the voltages and currents on both lines can be obtained.

These equations show that the resulting signals on the lines can be expressed as an

infinite sum of delayed and attenuated replicas of the the original applied voltages. They

apply for arbitrary waveforms and allow to determine the voltage and current magnitudes

at any time and any position along the lines. Convergence of the series depends on the

reflection coefecient at the source and receiving ends. These relations also indicate that the

difference in modal velocities of propagation can lead to abrupt changes in the signal

- " .waveforms. This is best illustrated in Fig. 3.2 where only line I is excited. For a reading at

x =0 on line 2, the reflected even and odd mode signal (S 2 and S 2) arrive at slightly
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different times and since their contributions are of opposite signs (cf. Eq.(3.13a)), they pro-

duce an impulse in the waveform of line 2. Such a disturbance, however, does not occur in

line I since S 2 and S*2 are added according to (3.12a).

Experimental readings were performed using a PG502 Tektronix pulse generator and a

microstrip pair (Figs. 3.2 and 3.3). The readings were found to verify the theory which can

also be extended to describe complex terminations.

3.2 Capacitive Terminations

Most digital applications for transmission lines include devices such as diodes, transistors,

and logic gates. Ideally the input impedance of such devices is very high and the input

capacitance is minimized to insure small switching delays. In practice as rise and fall times

become shorter, any small capacitance must be taken into consideration, this is more impor-

tant when several identical devices are connected to the far end of a single microstrip line.

Capacitance is related to the carriers in the devices ; for instance, in the case of a bipolar

transistor, a diffusion capacitance associated with the charge store in the base and a transi-

tion capacitance related to the base-emitter space charge layer make up the total input capa-

citance. This suggests that the impedance seen is strongly nonflinear, however, an average

capacitance can always be defined and used to implement a good linear model.

In the case where the load impedance consists of a resistor R, in parallel with a capacitor

C, (Fig. 3.4a), the reflection coefficients rL, and rLd for the even and odd modes in the fre-

quency domain become functions of frequency.

-Pe + j (a0",S= (3.30)
1 + jolt ,.

" . * .. '"
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-- 5 VI(°) (Volts) LVI (o) (volts)

3 3
2 LONG LINE 2 SHORT LINE

2 0

10 20 30 40 50 60 10 20 30 40 50;1:. -I .
t (ns) t (ns)

3 "Vp(o) (volts) 0.75-V 2(o) (volts)
"2 - 050.

1? t "0.25 .

0 0
10 20 30 40 50 10 20 30 40 50

t .,s t (ns) ..

-2- -050

-3 -0 75"

Figure 3.2 Cross-coupling for passive terminations with far end opened. Theoretical (plots)
and actual (photographs) waveforms for a long (left) and short (right) pair of
coupled microstrip lines. Photographs : top waveforms are V j(0) (driving
line) with vertical : 2 V idiv, bottom waveforms are V 40) (idle line) with
vertical : 0.5 V /div. Each horizontal division is 5 ns. The spikes on the
waveforms of V (0) are due to the delay differences between odd and even
mode reflections. For a short pair of lines, these spikes can nolonger be
detected by the scope because of their short duration.

- . . . .... "- .- ".
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Applied pulse:

2 tr =2ns

If=2ns

U) ti,= 5Ons

1 0 20 30 40 5070 8

-2

1.0

W = -05 (zs) j 4

0.51and ctul (hotgrah) aveorm. Potorap s top waefor is =5 0 (

(diigln)wt0etcl IV/iv otm wvfr sV1)(deo
ses ie0ihvria . dv ahhrzna iiini s

10 20 30 40 50 60 70 80:
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vs, S

(a)

tj tt 3 t4

Figure 3.4 (a) coupled microstrip lines with complex loads and (b) applied pulse.

X.
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rLd = Pd + jwrd (3.31)

where we have defined

PC R-Z RZ C (3.32)

R -Zd RZd C
.R-Z Tdd (3.33)I

Pd=R + Z R + Zd
Since rLe and rzL are functions of frequency, the time domain solutions for the modal

voltages are convolutions of the delayed source voltages and the inverse transforms of

rLe(cu) or rLd(O).

..- Ze oV x + 2k v x + 2k)
S j(tX ) = 2(Z+ +Z,) , v v( - se

[r!k((a)] (3.34a)

* SIt.x)= - Z[ ( + X 2(k+l))+V, 4t + x -2(k+l)I)]k.
2(Z, + Z,) k=0 v v

v F [rp,.'i)I (3.34b) -,z, [, ( x + 2kt v I x + 2kt )Jr+*

S'1(1,x) -IV Zd - x+2k41 - - 5d__I2 (Zd + ZI) k --o v V

.'p+,F [k ( ) (3.35a)

I(X)= Zd -[V" 1 ( + x -2(k+l)1 - , + -( +)13F3a-
- 2(Z, + Z,) .- vi j

F [r;')] (3.35b)

where denotes a convolution. Let us consider

U.

pI

+. ". . . .-. . .: . . -. . . -. . '' . - -. . .- . . . .
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r=- + JWT (3.36)

The associated inverse Fourier transform is

[r()] = I e (3.37)

where u (t) is the unit step function and 8(t) is the unit impulse function. Finding the

inverse transform of rF (w) implies applying the convolution theorem k times ; it can be

shown that

r + = 8(t) + (-1)k D 1  . t er (3.38)

F 1 +j oD

where D,.k are constant coefficients satisfying the recursion relation

D. -k(-)- j=0 (3.39a)

Ds =-D,.-t+ - 1  >0 (3.39b)

so that Equations (3.34)-(3.35) become 
4

.) Zo ( [v.,(t X + 2k) + V'(t x + 2ktAr,
2(z" + Z' )k=0 v" V,

(t) + (- I ED,, t J e (3.40a)

, Sit .x= [V 1 (t + )+V,(t + x
2(Z, +Z,) k0V, V,,

A
,-..1

-.. -. . ... - . - .
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Sk(t) + (-E-' Dk +, t 1 e 7 (3.40b)j --o T-,(34b

S1  ZX) Z [V, (t x + 2kl )Vp- x + 2kl k
2(Zd + Z, k) = vd Vd

SWtP + (- EDk t e (3.41a)

j=0 Td

A - Z E[V, 1(t + X -2(k+l)t_ +Xv + x7
2(Zd + Z,) . =0 Vd Vd

k- 1

In the case where the applied excitation is a pulse (cf. Fig. 3.4b), V, 1(t) and V, (t) have the

form

0 t 0

P )(t - t j). ::V, (' t - t 1) t I<K t e

U V(t) VP t 2 't <t 3  (3.42)

(t -t2
VP (t 3  t 4) 'ts<t

0 t >t 4

Moreover, the convolution integral

(t-r

= f (t t,-t) VP e - hddA (3.43)

can be solved by using the jA order derivative Theorem for Laplace transforms.

i1

o



so

A' e-IdX m! - (t-t 1 )-" e5Ft (3.44)

Lherefore, if we define __

e r (3.45)

we have

EDI t(3.46)

(t~ -r.

(t 2t 1)m =0

(-lI -I t j+ix

V F-

(t 2-t 1) -

for t1Kt <t2

V,(I+-" VP j!T' 4 1 - tm!i? +i (tt,)ine 1'

for t',<t t 3

K, (t +( I)-
I 0
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(- .°

(t-t) j T'- m!r e-"(1 3-t ) ! , =0

-j I

+1 ~ ~ ~ ~ I rj+ 3) 1 t)jm
m! (U- t- (j+l) rI 2 - 'm!"m 1 (t--t)J-m+ ' e ""

(t 3-t 4) M m0

for t 3t (t 4 "

*-, where we have made use of

~~f (,)*I:8(t )e " = f (t) (3.47),-;

Using these relations in (3.40) and (3.41), we can obtain the expressions for the modal

voltages. These equations can be easily implemented on a computer program to simulate the

waveforms produced by a pulse. Such example is shown in Figs. 3.5 and 3.6. As expected the

pulse width, the length of the lines, and the RC time constant are the most important

parameters that determine the shape of the waveforms. As for the case of passive loads, fast

pulses can result at the sending end of a quiet line, (waveshape of V 2(0) ). These fluctua-

tions cannot be observed accurately using presently available scopes since their duration is

much shorter than the response of thise instruments.

p. 7
1

, . . ~. . . . ....- ,-. , . .--. , --x-- .- ,..:.. . ,



Applied pulse:

j=2ns

4 t1=2ns

3 VP=4 V

2

Z5 10 15 20 25 30 40 45

Z, Z=890 v, =. I54m/ns t (11s)
-2

Zd =bl v,=0.19Imins
-3

W = ismds hn=14 mds

Z ~zO0 R~~CR
-5 L 1=0.35mn C =iOpF +4

Figure 3.5 Cross-coupling for capacitive loading. Theoretical (Plot) and actual (photograph)
waveforms of V 1(0) (driving line). Photograph Voltage reading is,
attenuated by 10. R is infinite (open).



53

Applied pulse:in

t, =2ns O
f 2ns

110 - t,.=12ns

0-88 V,=4 V

0.66-

044-

S0.22-

0 5301 20 25 30 40 45

t (ns)

-056 Z,=890 v,=Ojl4mirzs

-088Z~lO v=Ol~m/z z R jC R C
W =15 mils h = 14 ds+

-0. 0L-VI
S=iOmzs Z =600

1=035m C =-ODF

Figure 3.6: Cross-coupling for capacitive loading. Theoretical (plot) and actual (photograph)
waveform of V1 40) (idle line). Photograph :voltage reading is divided by P0.
R is infinite (open).
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CHAPTER 4

ANALYSIS OF MULTIPLE LINE STRUCTURES

The previous chapters dealt with with two microstrip line structures for which methods

of measurements and time domain behavior were investigated. Structures consisting of

more than two microstrip lines are, however, of greater occurrence in practical situations. In

particular, the behavior of three-line systems in the frequency domain has been explored by

several authors. Collier and El Deeb [29] have determined the scattering parameters for a

six-port refectometer; Tripathi [30] derived expressions for the immitance parameters of

symmetrical three-line microstrip circuits. Pavlidis and Hartnagel [31] derived the funda-

mental modes of propagations for these structures. Paul [32 constructed the matrix chain

parameters for multiconductor transmission lines in the frequency domain. Pulse propaga-

tion however, requires a different and more complex analysis in the time domain. For-

tunately, by using the insight gained in solving the two-line problems, expressions for mul-

tiple line structures in the time domain can be written by inspection provided that the

different modes of propagation are identified. The goal of this chapter is to illustrate such an

approach and generalize the techniques for n-line systems.

4.1 Three-Line Structures and Modes of Propagation

* . We first assume that the three microstrip lines shown in Fig. 4.1 are identical and that

the two edge spacings are equivalent ; then the differential equations relating line voltages

and currents can be written directly.

a9V1  ail V12 013(.aL=,- +L 1 2  +L1 3 - (4.1a)ax at at at

p%
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Figure 4.1 Three-line coupler.

%*
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a0al al a'' 03""- -L 1  + L 1 1 -1 - + L 1 2 - (4.1b)ax at at at (

"L- 1 2  + 13 +L 2  
(4.1c)

ox at at at

and

C 1 1 - +C 1 8V +C 132- (42a)
ax at at at

avIV2 3

-C012 = C + + 1-C 2 + Ci 3 (4.2b)

ax at at at

013 0' 1 1, 0 3- - = C 3 + CC12ai+ (4.2c)8x at at V

where the L,1 and the C,, are related to the physical parameters by

L I, = L, (4.3)

L 12 = L., (4.4)

L 13 L, (4.5)

and

C I I C+C,,, +C, (4.6)

C 2 = (4.7)

C 1 3 C= , (4.8)

The subscript m denotes mutual parameters between adjacent lines and the subscript n,

mutual parameters between nonadjacent lines. If we define

- o •

°0,%2
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V. = g1 - V 3  
(4.9a)

1 1 -3 (4.9b)

we can determine a first mode of the system bv subtracting (4.1c) from (4.1a) and (4.2c)

from (4.2a). This yields
4o.

v (4.1Oa)

ax Ot

_(C 1 1 -C 1 )- v °  (4.10b)

4x at

The velocity of propagation associated with this mode is

+1 1

=v I.(L ,,-L 13xC I,-C 1) -](L, -L, XC, +C,,, +2C,) (4.11)

Its characteristic impedance is

L 1 1 - L 13 _______4-za= c -, , -C- 4+, (4.12)

A second mode can be obtained by defining

Vp V + V + V 3  (4.13a)

!I= I, + VI2+ 13 (4.13b)

where i is a constant to be determined. When this linear combination is made using (4.1)

and (4.2), we get

. -- . %
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" "OV (LI+ LuLIa l l

+ "L ) (4.14a)ax a

12 L, 812
+(- + L1 + L) l-

e at

+ (L 13 + fL 12 + fLI)
at

-and

- ' =(CII +C 12 
+ C,3)OVI (4.14b)

Ax at

+ (E + C ,+ '"

+ (C13 + fCI2 +C)
at

We then introduce the approximations

Lj, + L 12+ L1 3 - Lj 1 + fLI2 (4.15)

C 11 + CC12 + C 13  C 1 + C 12  (4.16)

which reduce Equation (4.14) to

- V = (L1 , + eL ,,) L 1 , -L-'+ " , I L 12)3
".--"+(L + --- + (L ,,+ 1/3 (4.17a)aX OV f at at

_ v = +),C +V (CI+ aV
-(C. + C 1 2 )-+(C 1, +2 + (C 1 + C1 2) V (4.17b)

ax at f at at

If we choose =+%/, we then have

. ." w

"' " i4
%..
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ax at

- =c 1  + f2~C12)--~ (4.19)
ax at

This pair of equations defines a second mode with propagation velocity

= v4L,, + F2L12XCII +'f2c 12) V(L, + 'f2Lm X C, + C, 0+(k /)Cm)(420

and an associated wave impedance

- (i:+ 2fL1 2  L IL ~ (4.21)
+ fIp) (C, + C, (1_ )Cm)

Finally, a third mode is obtained in a similar manner by defining

Svn= vI+ 1)VI+ V3  (4.22a)

1, 1 1+ 112 +13 (4.22b)

Making the same approximations as per Equations (4.15) and (4.16) and setting 77=-,r2, we

get

ax L \2 alt42 a

ax atI
- =(C II /2- a (4.23b)

The propagation velocity is -
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V -1  - 'I , XC - 'I'c 12) -/(L, - f2LXC, + Cm +(I+f)C.,) (4.24)

and the characteristic impedance is

f 2L___ Ls-f2m (4.25)
.,'v c, -C c +C° +1++ 2)c,. .

The line variables can then be expressed in terms of the three modal variables as

V I-V. + 29 + (4.26)
2 2

2= 2 T2(4.27)

" 3 --V. + r (4.28)v 2 2

and

+ 11 + (4.29)
2 2

12 =  (4.30)2,I

- = I,+ I (4.31)
I3 -'-I 1

2 2

It must be emphasized that these results apply if Equations (4.15) and (4.16) are valid. In

general, such approximations are very well justified since in most cases

C, <<C, +( t /2)C and L, <<L ± %5L,. Figure 4.2 shows the different excitations

associated with the three modes of the system in the case where the mutual coupling

-S

.4,.., . * 0''+4 * .

...tr"'- ... ,
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3 vv/(- 4
.] V -ODE-

~7~CI2

C C

I-I

-, Figure 4.2 Excitation of the three fundamental modes of a three-line coupler. It is assumed
that the coupling between nonadjacent lines is negligible.

-. 5I
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• "between nonadjacent lines is negligible. With the relations, derived, the general solution

for the voltages and currents in the frequency domain can be established particularly for

time harmonic excitation. By examining the two-line solutions, we can anticipate the gen-

eral form for the three-line solutions, provided that the same assumptions regarding the ter-

minations hold ; namely, Z. t=Z 2=Z, 3=Z, and Z L I=ZL 2-ZL 3=ZL. With this, we can

write the modal voltages by inspection

V VC, Ac, [, (V, (t x + 2k) + 21k) k kf V- P V -s oy L a (4.32a)

bo Br[V 1(t + , Va V,-r41 (43b
€-b ow- + Ba [, ( + x -2(k+1)/ _V,( + x- 2 (k+1)l)rk rk+I 43b

,.Va, V ,

k-- _ '=o

+ '12Vat x + 2k) + V. 3(t x + 2k rr+1.33a

CO x - 2(k+ )t)
Vb g[V 5 1(t +'.-" --o vf

__"__ ___-_2(k +1i)l)
+ rJ2V, 41 + -2(k + )V, 3(t +x 2(kr+)- r

"1ivVg 2( ++ -(4.33b)

k -0 V'l)

* £ -/. - X + 2k1) + V,(t + X + 2kI k k... rV s F7 L ( 4 .3 4 a ) -

-. B, [ ( + x 2(k +I))

-V, + X (+))+ V' t +X - ( 111r47,r (4.34b)
V1  V17 -

* - where

*'A.. **o. . . .

.q ,". 2(k +. - .- 2(k +1)/
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_____ Z.-ZL

r - Z r Z Z (4.36
iZ + Z Zo+Z _

Z - Z, Zt - Z'

T)= Z, Z, r z  l= Z(4.37)
Z, + Z' ZT + ZL

The modal voltages are as defined by Equations (4.9), (4.13), and (4.22) where the subscript

f denotes a forward moving wave and b, a backward moving wave. Using (4.26)-(4.31),

the line variables can be obtained. If we apply the boundary conditions at x =0 and at x =1,

we get

Zo
A = -Bc = (4.38)

Z" +Z'

5 B z (4.39)Ag = --B gZ + Z, '

A=r -B 7 = (4.40)

4.2 N-Line Structures and Generalization

From the analysis performed, we can anticipate that n-line systems have solutions

analogous to three-line structures. More precisely, if the terminations are identical, an

expression can be written for the n-line structure from the modal characteristics. Since a

matrix representation is more convenient, the problem involves the determination of the

eigenvalues and eigenvectors which can be obtained using some approximations. The Tele-

graph Equations then become

-t

,:' 1 2.:: ., .''.:- -" ,", :",_': - , . - ',--_: .- , ":-_._, • _,. _, . --. , . : , • . . . .;. .. . - . i . ,-,
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-- 2 V= LC 8 V  (4.41)x2 2t
ax 2at2

where L and C are n xn matrices and V a n xl matrix for the line voltages. If the n

- modes of the system can be found, we can define an eigenvector matrix E such that

V,, =E V (4.42)

Vm is the column matrix for the n modal voltages. The solution in terms of E and the

matrix associated with the voltage sources at x =0, V, is

V f Am E rF ,,r V, (u,, (4.43a)
k =-0

V . -A. EE F,. -L. Vb.(Ubm) (4.43b)
k -0

where V and V,,, are the modal voltage matrices for the forward and backward waves,

respectively. A,, F,,,, and F... are diagonal n xn matrices associated with the source and

load impedances and the corresponding mode ; uf and ub,,, are the arguments associated

with the mode m for forward and backward variables, respectively

-- .. "x + 2kl x - 2(k: +1
U .. . -us,,k1 Ubm t + (4.44)

, where vm is the propagation velocity for mode m. From these relations, the line voltages

can be found by applying

V E-' IV fm + Vbm (4.45)

We then observe that the problem of finding the signal magnitudes at any time or any

position of an n -line structure becomes that of finding the eigenvalues and the eigenvector

"+ )I
*.

J
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associated with the system. For a large number of lines, this problem becomes nontrivial

- however, by using computer routines or by setting some approximations such as those in

Equations (4.15)-(4.16), one can arrive at satisfactory results. For instance, it can be

assumed that mutual parameters associated with any two nonadjacent lines are negligible.

UThis generates L and C matrices with only principal and secondary diagonal elements and

facilitates the analytical or computer task.

-. The solution to n-line pulse driven structures applies to many digital network problems.

When n logic gates are switching n other gates via transmission lines, noise and reflections

induced on a quiet line can be determined at any point. This would provide margins for the

applied signals (magnitude, pulse width, rise and fall times), and the microstrip line

geometries (spacing, width, and dielectric constant).

U+

r..+
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CHAPTER 5

CONCLUSION

This study explored some of the problems associated with two-line structures and

attempted a generalization to multiple line systems. These analyses represent the first steps

for the investigation of more complex situations involving nonlinearities, capacitive termi-

nations, and discontinuities along the lines. N-line systems with arbitrary terminations can

therefore be treated using a numerical approach to provide reliable design guidelines fbr

digital networks.

-. ?.
j.:':, «:4f uj:jji - - -- * ' . . - .
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